VSFCM: A Novel Viewpoint-Driven Subspace Fuzzy C-Means Algorithm
نویسندگان
چکیده
Nowadays, most fuzzy clustering algorithms are sensitive to the initialization results of and have a weak ability handle high-dimensional data. To solve these problems, we developed viewpoint-driven subspace c-means (VSFCM) algorithm. Firstly, propose new cut-off distance. Based on this, establish distance-induced (CDCI) method use it as strategy for cluster center viewpoint selection. Secondly, by taking obtained CDCI entry point knowledge, driven knowledge data is formed. upon these, put forward VSFCM algorithm combined with viewpoints, separation terms, feature weights. Moreover, compared symmetric weights other algorithms, exhibit significant asymmetry. That is, they assign greater features that contribute more, which validated artificial dataset DATA2 in experimental section. The multiple advanced three types datasets validate proposed has best performance five indicators. It demonstrated more effective, weight allocation consistent asymmetry data, can achieve better convergence speed while displaying efficiency.
منابع مشابه
OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملFuzzy C- Means Algorithm- A Review
Clustering is a task of assigning a set of objects into groups called clusters. In general the clustering algorithms can be classified into two categories. One is hard clustering; another one is soft (fuzzy) clustering. Hard clustering, the data’s are divided into distinct clusters, where each data element belongs to exactly one cluster. In soft clustering, data elements belong to more than one...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملA thresholded fuzzy c-means algorithm for semi-fuzzy clustering
In this paper, the problem of achieving 'semi-fuzzy' or 'soft' clustering of multidimensional data is discussed.A technique based on thresholding the results of the fuzzy c-means algorithm is introduced.The proposed approach is analysed and contrasted with the soft clustering method (see S. Z. Selim and M. A. Ismail, Pattern Recognition 17, 559-568) showing the merits of the new method.Separati...
متن کاملNoise Subspace Fuzzy C-Means Clustering for Robust Speech Recognition
In this paper a fuzzy C-means (FCM) based approach for speech/non-speech discrimination is developed to build an effective voice activity detection (VAD) algorithm. The proposed VAD method is based on a soft-decision clustering approach built over a ratio of subband energies that improves recognition performance in noisy environments. The accuracy of the FCM-VAD algorithm lies in the use of a d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2023
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app13106342